1,138 research outputs found

    Giant electrocaloric effect in thin film Pb Zr_0.95 Ti_0.05 O_3

    Full text link
    An applied electric field can reversibly change the temperature of an electrocaloric material under adiabatic conditions, and the effect is strongest near phase transitions. This phenomenon has been largely ignored because only small effects (0.003 K V^-1) have been seen in bulk samples such as Pb0.99Nb0.02(Zr0.75Sn0.20Ti0.05)0.98O3 and there is no consensus on macroscopic models. Here we demonstrate a giant electrocaloric effect (0.48 K V^-1) in 300 nm sol-gel PbZr0.95Ti0.05O3 films near the ferroelectric Curie temperature of 222oC. We also discuss a solid state device concept for electrical refrigeration that has the capacity to outperform Peltier or magnetocaloric coolers. Our results resolve the controversy surrounding macroscopic models of the electrocaloric effect and may inspire ab initio calculations of electrocaloric parameters and thus a targeted search for new materials.Comment: 5 pages, 4 figure

    Stakeholder engagement does not guarantee impact: A co-productionist perspective on model-based drought research

    Get PDF
    Stakeholder engagement has become a watchword for environmental scientists to assert the societal relevance of their projects to funding agencies. In water research based on computer simulation modelling, stakeholder engagement has attracted interest as a means to overcome low uptake of new tools for water management. An increasingly accepted view is that more and better stakeholder involvement in research projects will lead to increased adoption of the modelling tools created by scientists in water management. However, we cast doubt on this view by drawing attention to how the freedom of stakeholder organizations to adopt new scientific modelling tools in their regular practices is circumscribed by the societal context. We use a modified concept of co-production in an analysis of a case of scientific research on drought in the UK to show how relationships between actors in the drought governance space influence the uptake of scientific modelling tools. The analysis suggests an explanation of why stakeholder engagement with one scientific project led to one output (data) getting adopted by stakeholders while another output (modelling tools) attracted no discernible interest. Our main objective is to improve the understanding of the limitations to stakeholder engagement as a means of increasing societal uptake of scientific research outputs

    Wnt4 antagonises Wnt3a mediated increases in growth and glucose stimulated insulin secretion in the pancreatic beta-cell line, INS-1

    Get PDF
    This is the author accepted manuscript. The final version is available from Elsevier via the DOI in this record.The Wnt signalling pathway in beta-cells has been linked to the development of type 2 diabetes. Investigating the impact of a non-canonical Wnt ligand, Wnt4, on beta-cell function we found that in INS-1 cells, Wnt4 was able to completely block Wnt3a stimulated cell growth and insulin secretion. However, despite high levels of Wnt4 protein being detected in INS-1 cells, reducing the expression of Wnt4 had no impact on cell growth or Wnt3a signalling. As such, the role of the endogenously expressed Wnt4 in beta-cells is unclear, but the data showing that Wnt4 can act as a negative regulator of canonical Wnt signalling in beta-cells suggests that this pathway could be a potential target for modulating beta-cell function.This work was supported by the Northcott Devon Medical Foundation (grant TB/MG/NO5002/141109 to HJW)

    Quantitative high-dynamic-range electron diffraction of polar nanodomains in Pb2 ScTaO6

    Get PDF
    Highly B‐site ordered Pb2ScTaO6 crystals are studied as a function of temperature via dielectric spectroscopy and in situ high‐dynamic‐range electron diffraction. The degree of ordering is examined on the local and macroscopic scale and is determined to be 76%. Novel analysis of the electron diffraction patterns provides structural information with two types of antiferroelectric displacements determined to be present in the polar structure. It is then found that a low‐temperature transition occurs on cooling at ≈210 K that is not present on heating. This phenomenon is discussed in terms of the freezing of dynamic polar nanodomains where a high density of domain walls creates a metastable state

    Rapid identification of Brucella isolates to the species level by real time PCR based single nucleotide polymorphism (SNP) analysis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Brucellosis, caused by members of the genus <it>Brucella</it>, remains one of the world's major zoonotic diseases. Six species have classically been recognised within the family <it>Brucella </it>largely based on a combination of classical microbiology and host specificity, although more recently additional isolations of novel <it>Brucella </it>have been reported from various marine mammals and voles. Classical identification to species level is based on a biotyping approach that is lengthy, requires extensive and hazardous culturing and can be difficult to interpret. Here we describe a simple and rapid approach to identification of <it>Brucella </it>isolates to the species level based on real-time PCR analysis of species-specific single nucleotide polymorphisms (SNPs) that were identified following a robust and extensive phylogenetic analysis of the genus.</p> <p>Results</p> <p>Seven pairs of short sequence Minor Groove Binding (MGB) probes were designed corresponding to SNPs shown to possess an allele specific for each of the six classical <it>Brucella </it>spp and the marine mammal <it>Brucella</it>. Assays were optimised to identical reaction parameters in order to give a multiple outcome assay that can differentiate all the classical species and <it>Brucella </it>isolated from marine mammals. The scope of the assay was confirmed by testing of over 300 isolates of <it>Brucella</it>, all of which typed as predicted when compared to other phenotypic and genotypic approaches. The assay is sensitive being capable of detecting and differentiating down to 15 genome equivalents. We further describe the design and testing of assays based on three additional SNPs located within the 16S rRNA gene that ensure positive discrimination of <it>Brucella </it>from close phylogenetic relatives on the same platform.</p> <p>Conclusion</p> <p>The multiple-outcome assay described represents a new tool for the rapid, simple and unambiguous characterisation of <it>Brucella </it>to the species level. Furthermore, being based on a robust phylogenetic framework, the assay provides a platform that can readily be extended in the future to incorporate newly identified <it>Brucella </it>groups, to further type at the subspecies level, or to include markers for additional useful characteristics.</p

    Pyroelectric and photovoltaic properties of Nb doped PZT thin films

    Get PDF
    Nb-doped lead zirconate titanate (PZT) films with up to 12 at. % of Nb were co-sputtered from oxide PZT and metallic Nb targets at a substrate temperature of 600 °C. Up to 4 at. % of Nb was doped into the perovskite structure with the formation of B-site cation vacancies for charge compensation. The preferential (111) PZT orientation decreased with Nb-doping within the solid solution region. The ferroelectric response of the films was affected by the large values of the internal field present in the samples (e.g., −84.3 kV cm−1 in 12 at. % Nd doped films). As-deposited unpoled films showed large values of the pyroelectric coefficient due to self-poling. The pyroelectric coefficient increased with Nb-doping and showed a complex dependence on the applied bias. The photovoltaic effect was observed in the films. The value of the photocurrent increased with the A/B ratio. The combined photovoltaic–pyroelectric effect increased the values of the measured current by up to 47% upon light illumination

    Octahedral tilting, monoclinic phase and the phase diagram of PZT

    Full text link
    Anelastic and dielectric spectroscopy measurements on PZT close to the morphotropic (MPB) and antiferroelectric boundaries provide new insight in some controversial aspects of its phase diagram. No evidence is found of a border separating monoclinic (M) from rhombohedral (R) phases, in agreement with recent structural studies supporting a coexistence of the two phases over a broad composition range x < 0.5, with the fraction of M increasing toward the MPB. It is also discussed why the observed maximum of elastic compliance appears to be due to a rotational instability of the polarisation and therefore cannot be explained by extrinsic softening from finely twinned R phase alone, but indicates the presence also of M phase, not necessarily homogeneous. A new diffuse transition is found within the ferroelectric phase near x ~ 0.1, at a temperature T_IT higher than the well established boundary T_T to the phase with tilted octahedra. It is proposed that around T_IT the octahedra start rotating in a disordered manner and finally become ordered below T_T. In this interpretation, the onset temperature for octahedral tilting monotonically increases up to the antiferroelectric transition of PbZrO3, and the depression of T_T(x) below x = 0.18 would be a consequence of the partial relieve of the mismatch between the cation radii with the initial stage of tilting below T_IT.Comment: submitted to J. Phys.: Condens. Matte

    Retreating to nature : rethinking 'therapeutic landscapes'

    Get PDF
    There is a long history of removing oneself from ‘society’ in order to recuperate or repair. This paper considers a yoga and massage retreat in Southern Spain, and what opportunities this retreat experience might offer for recuperation and the creation of healthy bodies. The paper positions ‘nature’ as an active participant, and as ‘enrolled’ in the experiences of the retreat as a ‘therapeutic landscape’, and questions how and what particular aspects of yoga practice (in intimate relation with place) give rise to therapeutic experiences
    corecore